In this work, a sliding mode control (SMC) method and a composite learning SMC (CLSMC) method are proposed to solve the synchronization problem of chaotic fractional-order neural networks (FONNs). A sliding mode surface and an adaptive law are constructed to update parameter estimation. The SMC ensures that the synchronization error asymptotically tends to zero under a strict permanent excitation (PE) condition. To reduce its rigor, online recording data together with instantaneous data is used to define a prediction error about the uncertain parameter. Both synchronization error and prediction error are used to construct a composite learning law. The proposed CLSMC method can ensure that the synchronization error asymptotically approaches zero, and it can accurately estimate the uncertain parameter. The above results obtained in the CLSMC method only requires an interval-excitation (IE) condition which can be easily satisfied. Finally, comparative results reveal the control effects of the two proposed methods.
Composite learning sliding mode synchronization of chaotic fractional-order neural networks.
阅读:5
作者:Han Zhimin, Li Shenggang, Liu Heng
| 期刊: | Journal of Advanced Research | 影响因子: | 13.000 |
| 时间: | 2020 | 起止号: | 2020 Apr 26; 25:87-96 |
| doi: | 10.1016/j.jare.2020.04.006 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
