A self-attention-driven deep learning framework for inference of transcriptional gene regulatory networks.

阅读:8
作者:Liu Yong, Zhong Le, Yan Bin, Chen Zhuobin, Yu Yanjia, Yu Dan, Qin Jing, Wang Junwen
The interactions between transcription factors (TFs) and the target genes could provide a basis for constructing gene regulatory networks (GRNs) for mechanistic understanding of various biological complex processes. From gene expression data, particularly single-cell transcriptomic data containing rich cell-to-cell variations, it is highly desirable to infer TF-gene interactions (TGIs) using deep learning technologies. Numerous models or software including deep learning-based algorithms have been designed to identify transcriptional regulatory relationships between TFs and the downstream genes. However, these methods do not significantly improve predictions of TGIs due to some limitations regarding constructing underlying interactive structures linking regulatory components. In this study, we introduce a deep learning framework, DeepTGI, that encodes gene expression profiles from single-cell and/or bulk transcriptomic data and predicts TGIs with high accuracy. Our approach could fuse the features extracted from Auto-encoder with self-attention mechanism and other networks and could transform multihead attention modules to define representative features. By comparing it with other models or methods, DeepTGI exhibits its superiority to identify more potential TGIs and to reconstruct the GRNs and, therefore, could provide broader perspectives for discovery of more biological meaningful TGIs and for understanding transcriptional gene regulatory mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。