3D similarity is useful in predicting the profiles of unprecedented molecular frameworks that are 2D dissimilar to known compounds. When comparing pairs of compounds, 3D similarity of the pairs depends on conformational sampling, the alignment method, the chosen descriptors, and the similarity coefficients. In addition to these four factors, 3D chemocentric target prediction of an unknown compound requires compound-target associations, which replace compound-to-compound comparisons with compound-to-target comparisons. In this study, quantitative comparison of query compounds to target classes (one-to-group) was achieved via two types of 3D similarity distributions for the respective target class with parameter optimization for the fitting models: (1) maximum likelihood (ML) estimation of queries, and (2) the Gaussian mixture model (GMM) of target classes. While Jaccard-Tanimoto similarity of query-to-ligand pairs with 3D structures (sampled multi-conformers) can be transformed into query distribution using ML estimation, the ligand pair similarity within each target class can be transformed into a representative distribution of a target class through GMM, which is hyperparameterized via the expectation-maximization (EM) algorithm. To quantify the discriminativeness of a query ligand against target classes, the Kullback-Leibler (K-L) divergence of each query was calculated and compared between targets. 3D similarity-based K-L divergence together with the probability and the feasibility index, (F(m)), showed discriminative power with regard to some query-class associations. The K-L divergence of 3D similarity distributions can be an additional method for (1) the rank of the 3D similarity score or (2) the p-value of one 3D similarity distribution to predict the target of unprecedented drug scaffolds.
Comparing a Query Compound with Drug Target Classes Using 3D-Chemical Similarity.
阅读:3
作者:Lee Sang-Hyeok, Ahn Sangjin, Kim Mi-Hyun
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2020 | 起止号: | 2020 Jun 12; 21(12):4208 |
| doi: | 10.3390/ijms21124208 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
