Retinal vessel segmentation plays a crucial role in diagnosing various retinal and cardiovascular diseases and serves as a foundation for computer-aided diagnostic systems. Blood vessels in color retinal fundus images, captured using fundus cameras, are often affected by illumination variations and noise, making it difficult to preserve vascular integrity and posing a significant challenge for vessel segmentation. In this paper, we propose HM-Mamba, a novel hierarchical multi-scale Mamba-based architecture that incorporates tubular structure-aware convolution to extract both local and global vascular features for retinal vessel segmentation. First, we introduce a tubular structure-aware convolution to reinforce vessel continuity and integrity. Building on this, we design a multi-scale fusion module that aggregates features across varying receptive fields, enhancing the model's robustness in representing both primary trunks and fine branches. Second, we integrate multi-branch Fourier transform with the dynamic state modeling capability of Mamba to capture both long-range dependencies and multi-frequency information. This design enables robust feature representation and adaptive fusion, thereby enhancing the network's ability to model complex spatial patterns. Furthermore, we propose a hierarchical multi-scale interactive Mamba block that integrates multi-level encoder features through gated Mamba-based global context modeling and residual connections, enabling effective multi-scale semantic fusion and reducing detail loss during downsampling. Extensive evaluations on five widely used benchmark datasets-DRIVE, CHASE_DB1, STARE, IOSTAR, and LES-AV-demonstrate the superior performance of HM-Mamba, yielding Dice coefficients of 0.8327, 0.8197, 0.8239, 0.8307, and 0.8426, respectively.
Hierarchical Multi-Scale Mamba with Tubular Structure-Aware Convolution for Retinal Vessel Segmentation.
阅读:3
作者:Wang Tao, Tian Dongyuan, Zhao Haonan, Liu Jiamin, Wang Weijie, Li Chunpei, Liu Guixia
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 14; 27(8):862 |
| doi: | 10.3390/e27080862 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
