Dalbergia odorifera Trans-Nerolidol Protects Against Myocardial Ischemia via Downregulating Cytochrome- and Caspases-Signaling Pathways in Isoproterenol-Induced Rats.

阅读:3
作者:Wang Canhong, Wu Yulan, Gong Bao, Zhao Xiangsheng, Meng Hui, Mou Junyu, Cheng Xiaoling, Tan Yinfeng, Wei Jianhe
Dalbergia odorifera is widely used to treat cardiovascular diseases. Our research group found that Dalbergia odorifera volatile oil has a good anti-myocardial ischemic effect, and its main pharmacodynamic components are trans-nerolol and its oxides. However, the exact mechanisms underlying this effect have not yet been elucidated. This study aimed to explore the potential myocardial protective effects of trans-nerolol and its underlying molecular mechanisms. Molecular docking was used to predict and visualize the possible mechanism of the anti-apoptotic myocardial protection by trans-nerolol. The myocardial protective effect of trans-nerolol was evaluated by observing pathological injury, myocardial enzyme levels, oxidation, antioxidant levels, and the expression of related proteins. Molecular docking results showed that trans-nerolol binds closely to cytochrome C (Cytc) and apoptosis-related proteins, suggesting that it may play a role in interacting with these target proteins. The results showed that pre-treatment with dose-dependent trans-nerolol significantly mitigated the myocardial histological damage; decreased lactate dehydrogenase (LDH), creatinine kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) levels; reduced nitric oxide (NO) production, hydrogen peroxide (H(2)O(2)), and lipid peroxide (LPO); and increased the total antioxidant content (T-AOC), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities compared with the model group. In addition, dose-dependent trans-nerolol significantly increased the Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase levels. Moreover, trans-nerolol markedly reduced the endogenous and external apoptotic pathways; downregulated the protein expression of Cytc, apoptotic protease activating factor-1 (Apaf1), Fibroblast-associated (Fas), Cysteine-aspartate protease 3 (Caspase3), Cysteine-aspartate protease 8 (Caspase8), and Cysteine-aspartate protease 9 (Caspase9); and upregulated the expression of Heat shock protein 70 (Hsp70) and B-cell lymphoma-2 (Bcl-2). These data indicate that trans-nerolol exerts protective effects against myocardial ischemia (MI), and its mechanism is associated with the suppression of the Cytc- and caspase-signaling pathways. Trans-nerolol has a therapeutic effect on MI, and its mechanism of action is related to its anti-apoptotic effect. These results suggest that Dalbergia odorifera has a potential role to be developed as an MI-promoting therapeutic agent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。