Traumatic bone injury is one of the most common injuries that require surgical intervention, and current treatments suffer severe drawbacks. Modern research in bone regeneration focuses on implants that will support and enhance native tissue regeneration. One scaffold material that shows promise is graphene oxide (GO), a 2D nanomaterial made from oxidation of graphite. GO is biocompatible, strong, osteoinductive, is safely and slowly resorbed by the body, has a cheap, facile, and scalable synthesis, and is highly tailorable and functionalizable. The bioactivity of GO can be enhanced via functionalization with biomolecules such as peptides, proteins, and small molecules. Here, short peptides RGD, DGEA, and KKGHK are covalently bound to GO through a Claisen modification (CG) to create new functional graphenic materials that are cell-adhesive, osteogenic, and angiogenic, respectively. These peptide-Claisen graphenes (peptide-CGs) are found to be cytocompatible, to encourage cell spreading on the graphenic surface, to promote osteogenesis in stem cells, and to induce angiogenesis in vascular endothelial cells. They show promise as next-generation bone regeneration scaffolds by overcoming challenges frequently faced by bone regeneration scaffolds, namely retaining implanted and recruited cells, promoting their survival, proliferation, and differentiation, and ensuring a sufficient oxygen and nutrient supply to new tissue.
Covalent Peptide-Graphene Conjugates for Enhanced Cell Spreading, Osteogenic Differentiation, and Angiogenesis in Bone Defects.
阅读:15
作者:Wolf Michelle E, Liu Yaxuan, Orlando Jason D, Zhou Jingzhi, Sydlik Stefanie A
| 期刊: | Chembiochem | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 26(13):e202500210 |
| doi: | 10.1002/cbic.202500210 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
