BACKGROUND: Among abiotic stresses to agricultural crops, drought stress is the most prolific and has worldwide detrimental impacts. The soybean (Glycine max) is one of the most important sources of nutrition to both livestock and humans. Different plant introductions (PI) of soybeans have been identified to have different drought tolerance levels. OBJECTIVES: Here, two soybean lines, Pana (drought sensitive) and PI 567731 (drought tolerant) were selected to identify chemical compounds and pathways which could be targets for metabolomic analysis induced by abiotic stress. METHODS: Extracts from the two lines are analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The high mass resolution and accuracy of the method allows for identification of ions from hundreds of different compounds in each cultivar. The exact m/z of these species were filtered through SoyCyc and the Human Metabolome Database to identify possible molecular formulas of the ions. Next, the exact m/z values were converted into Kendrick masses and their Kendrick mass defects (KMD) computed, which were then sorted from high to low KMD. This latter process assists in identifying many additional molecular formulas, and is noted to be particularly useful in identifying formulas whose mass difference corresponds to two hydrogen atoms. RESULTS: In this study, more than 460 ionic formulas were identified in Pana, and more than 340 ionic formulas were identified in PI 567731, with many of these formulas reported from soybean for the first time. CONCLUSIONS: Using the SoyCyc matches, the metabolic pathways from each cultivar were compared, providing lists of molecular targets available to profile effects of abiotic stress on these soybean cultivars. Key metabolites include chlorophylls, pheophytins, mono- and diacylglycerols, cycloeucalenone, squalene, and plastoquinones and involve pathways which include the anabolism and catabolism of chlorophyll, glycolipid desaturation, and biosynthesis of phytosterols, plant sterols, and carotenoids.
Chemical Informatics Combined with Kendrick Mass Analysis to Enhance Annotation and Identify Pathways in Soybean Metabolomics.
阅读:3
作者:Wood Troy D, Tiede Erin R, Izydorczak Alexandra M, Zemaitis Kevin J, Ye Heng, Nguyen Henry T
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 24; 15(2):73 |
| doi: | 10.3390/metabo15020073 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
