Clustering Molecules at a Large Scale: Integrating Spectral Geometry with Deep Learning.

阅读:4
作者:Akgüller Ömer, Balcı Mehmet Ali, Cioca Gabriela
This study conducts an in-depth analysis of clustering small molecules using spectral geometry and deep learning techniques. We applied a spectral geometric approach to convert molecular structures into triangulated meshes and used the Laplace-Beltrami operator to derive significant geometric features. By examining the eigenvectors of these operators, we captured the intrinsic geometric properties of the molecules, aiding their classification and clustering. The research utilized four deep learning methods: Deep Belief Network, Convolutional Autoencoder, Variational Autoencoder, and Adversarial Autoencoder, each paired with k-means clustering at different cluster sizes. Clustering quality was evaluated using the Calinski-Harabasz and Davies-Bouldin indices, Silhouette Score, and standard deviation. Nonparametric tests were used to assess the impact of topological descriptors on clustering outcomes. Our results show that the DBN + k-means combination is the most effective, particularly at lower cluster counts, demonstrating significant sensitivity to structural variations. This study highlights the potential of integrating spectral geometry with deep learning for precise and efficient molecular clustering.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。