Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.

阅读:3
作者:Hou Jiawen, Zhao Wei, Nie Qing
During cell-cell communication (CCC), pathways activated by different ligand-receptor pairs may have crosstalk with each other. While multiple methods have been developed to infer CCC networks and their downstream response using single-cell RNA-seq data (scRNA-seq), the potential crosstalk between pathways connecting CCC with its downstream targets has been ignored. Here we introduce a machine learning-based method SigXTalk to analyze the crosstalk using scRNA-seq data by quantifying signal fidelity and specificity, two critical quantities measuring the effect of crosstalk. Specifically, a hypergraph learning method is used to encode the higher-order relations among receptors, transcription factors and target genes within regulatory pathways. Benchmarking of SigXTalk using simulation data shows the effectiveness, robustness, and accuracy in identifying key shared molecules among crosstalk pathways and their roles in transferring shared CCC information. Analysis of disease data shows SigXTalk's capability in identifying crucial signals, targets, regulatory networks, and CCC patterns that distinguish different disease conditions. Applications to the data with multiple time points reveals SigXTalk's capability in tracking the evolution of crosstalk pathways over time. Together our studies provide a systematic analysis of CCC-induced regulatory networks from the perspective of crosstalk between pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。