Epithelial-mesenchymal transition (EMT), a basic developmental process that might promote cancer metastasis, has been studied from various perspectives. Recently, the early warning theory has been used to anticipate critical transitions in EMT from mathematical modeling. However, the underlying mechanisms of EMT involving complex molecular networks remain to be clarified. Especially, how to quantify the global stability and stochastic transition dynamics of EMT and what the underlying mechanism for early warning theory in EMT is remain to be fully clarified. To address these issues, we constructed a comprehensive gene regulatory network model for EMT and quantified the corresponding potential landscape. The landscape for EMT displays multiple stable attractors, which correspond to E, M, and some other intermediate states. Based on the path-integral approach, we identified the most probable transition paths of EMT, which are supported by experimental data. Correspondingly, the results of transition actions demonstrated that intermediate states can accelerate EMT, consistent with recent studies. By integrating the landscape and path with early warning concept, we identified the potential barrier height from the landscape as a global and more accurate measure for early warning signals to predict critical transitions in EMT. The landscape results also provide an intuitive and quantitative explanation for the early warning theory. Overall, the landscape and path results advance our mechanistic understanding of dynamical transitions and roles of intermediate states in EMT, and the potential barrier height provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the early warning theory.
Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition.
阅读:3
作者:Lang Jintong, Nie Qing, Li Chunhe
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2021 | 起止号: | 2021 Oct 19; 120(20):4484-4500 |
| doi: | 10.1016/j.bpj.2021.08.043 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
