Non-Markovianity of qubit evolution under the action of spin environment.

阅读:4
作者:Chakraborty Sagnik, Mallick Arindam, Mandal Dipanjan, Goyal Sandeep K, Ghosh Sibasish
The question, whether an open system dynamics is Markovian or non-Markovian can be answered by studying the direction of the information flow in the dynamics. In Markovian dynamics, information must always flow from the system to the environment. If the environment is interacting with only one of the subsystems of a bipartite system, the dynamics of the entanglement in the bipartite system can be used to identify the direction of information flow. Here we study the dynamics of a two-level system interacting with an environment, which is also a heat bath, and consists of a large number of two-level quantum systems. Our model can be seen as a close approximation to the 'spin bath' model at low temperatures. We analyze the Markovian nature of the dynamics, as we change the coupling between the system and the environment. We find the Kraus operators of the dynamics for certain classes of couplings. We show that any form of time-independent or time-polynomial coupling gives rise to non-Markovianity. Also, we witness non-Markovianity for certain parameter values of time-exponential coupling. Moreover, we study the transition from non-Markovian to Markovian dynamics as we change the value of coupling strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。