This study provides valuable insight into developing more accurate blood-flow models for targeted drug delivery and therapeutic heat management in stenosed arteries by focusing on the synergistic effects of electrokinetic forces and thermal-chemical interactions. The aim is to investigate electroosmotic flow and endothermic/exothermic chemical reactions within a constricted artery by incorporating the Cattaneo-Christov (CC) heat flux model into a Carreau ternary hybrid nanofluid framework. The governing equations are solved computationally using the BVP4C solver. The main results indicate that the increase of the zeta potential (electrokinetic effect) causes a substantial reduction of the wall shear stress, which lowers energy losses and improves overall blood flow efficiency. In addition, at high electroosmotic parameter the fluid is accelerated, and an enhancement of drug delivery precision and therapeutic effectiveness occur. The model also predicts a modestâ~â7% increase in drag force on the arterial wall under these conditions. Conclusion: Integrating electrokinetic forces and thermal-chemical effects into blood-flow modeling significantly improves flow efficiency and targeted delivery in stenotic arteries, highlighting a promising strategy for optimizing nanoparticle-based treatments.
âElectrokinetic blood flow of Carreau ternary nanofluids in stenotic arteries with thermal reactions under CC heat flux for therapy.
阅读:3
作者:Riasat Saima, Iqbal Saira, Hina Sadia, Ghachem Kaouther, Eladeb Aboulbaba, Hassen Walid, Kolsi Lioua
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 11; 15(1):29370 |
| doi: | 10.1038/s41598-025-14211-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
