Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases.

阅读:13
作者:Hock Daniella H, Caruana Nikeisha J, Semcesen Liana N, Lake Nicole J, Formosa Luke E, Amarasekera Sumudu S C, Stait Tegan, Tregoning Simone, Frajman Leah E, Bournazos Adam M, Robinson David R L, Ball Megan, Reljic Boris, Ryder Bryony, Wallis Mathew J, Vasudevan Anand, Beck Cara, Peters Heidi, Lee Joy, Tan Natalie B, Freckmann Mary-Louise, Karlaftis Vasiliki, Attard Chantal, Monagle Paul, Samarasinghe Amanda, Brown Rosie, Bi Weimin, Lek Monkol, McFarland Robert, Taylor Robert W, Ryan Michael T, Cooper Sandra T, Stark Zornitza, Christodoulou John, Compton Alison G, Thorburn David R, Stroud David A
BACKGROUND: Only half of individuals with suspected rare diseases receive a genetic diagnosis following genomic testing. A genetic diagnosis allows access to appropriate care, restores reproductive confidence and reduces the number of potentially unnecessary interventions. A major barrier is the lack of disease agnostic functional tests suitable for implementation in routine diagnostics that can provide evidence supporting pathogenicity of novel variants, especially those refractory to RNA sequencing. METHODS: Focusing on mitochondrial disease, we describe an untargeted mass-spectrometry based proteomics pipeline that can quantify proteins encoded by > 50% of Mendelian disease genes and > 80% of known mitochondrial disease genes in clinically relevant sample types, including peripheral blood mononuclear cells (PBMCs). In total we profiled > 90 individuals including undiagnosed individuals suspected of mitochondrial disease and a supporting cohort of disease controls harbouring pathogenic variants in nuclear and mitochondrial genes. Proteomics data were benchmarked against pathology accredited respiratory chain enzymology to assess the performance of proteomics as a functional test. Proteomics testing was subsequently applied to individuals with suspected mitochondrial disease, including a critically ill infant with a view toward rapid interpretation of variants identified in ultra-rapid genome sequencing. RESULTS: Proteomics testing provided evidence to support variant pathogenicity in 83% of individuals in a cohort with confirmed mitochondrial disease, outperforming clinical respiratory chain enzymology. Freely available bioinformatic tools and criteria developed for this study ( https://rdms.app/ ) allow mitochondrial dysfunction to be identified in proteomics data with high confidence. Application of proteomics to undiagnosed individuals led to 6 additional diagnoses, including a mitochondrial phenocopy disorder, highlighting the disease agnostic nature of proteomics. Use of PBMCs as a sample type allowed rapid return of proteomics data supporting pathogenicity of novel variants identified through ultra-rapid genome sequencing in as little as 54 h. CONCLUSIONS: This study provides a framework to support the integration of a single untargeted proteomics test into routine diagnostic practice for the diagnosis of mitochondrial and potentially other rare genetic disorders in clinically actionable timelines, offering a paradigm shift for the functional validation of genetic variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。