Transcriptome-wide association studies (TWASs) have been developed to identify candidate genes associated with complex traits by integrating genome-wide association studies (GWASs) with expression quantitative trait loci (eQTL) data. However, most existing TWAS methods assess the marginal association between a single gene and a trait of interest, ignoring the influence of other genes in the same genomic region. Furthermore, false-positive gene-trait associations may arise due to correlations between eQTLs and nearby causal genetic variants. We introduce TWASKnockoff, a knockoff-based framework for detecting susceptibility genes using GWAS summary statistics and eQTL data. Unlike traditional TWAS approaches that rely on marginal testing, TWASKnockoff evaluates the conditional independence of each gene-trait pair, accounting for both cis-predicted expression correlations across genes and correlations between gene expression levels and genetic variants. TWASKnockoff estimates the correlation matrix of all genetic elements (including cis-predicted gene expression levels and genetic variant genotypes) by averaging estimations from parametric bootstrap samples, then applies knockoff-based inference to identify susceptibility genes while controlling the false discovery rate (FDR). Through simulations and an application to type 2 diabetes mellitus (T2D) data, we demonstrate that TWASKnockoff achieves superior FDR control and enhances power in detecting relevant gene-trait pairs at a fixed FDR level.
Knockoff procedure improves susceptibility gene identifications in conditional transcriptome-wide association studies.
阅读:13
作者:Zhang Xiangyu, Wang Lijun, Zhao Jia, Zhao Hongyu
| 期刊: | American Journal of Human Genetics | 影响因子: | 8.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 25 |
| doi: | 10.1016/j.ajhg.2025.08.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
