Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination.

阅读:7
作者:Lee Wen-Jane, Lan Keng-Hsin, Chou Chiang-Ting, Yi Yu-Chiao, Chen Wei-Chih, Pan Hung-Chuan, Peng Yen-Chun, Wang Keh-Bin, Chen Yi-Ching, Chao Te-Hsin, Tien Hsing-Ru, Sheu Wayne Huey Herng, Sheu Meei-Ling
Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2) in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s) of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA) in endothelial cells. Vascular endothelial growth factor (VEGF) or chemokine (C-X-C motif) ligand 1 (CXCL1) increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。