Novel genetic determinants contribute to hearing loss in a central European cohort with enlarged vestibular aqueduct.

阅读:16
作者:Bernardinelli Emanuele, Liuni Raffaella, Jamontas Rapolas, Tesolin Paola, Morgan Anna, Girotto Giorgia, Roesch Sebastian, Dossena Silvia
BACKGROUND: The enlarged vestibular aqueduct (EVA) is the most commonly detected inner ear malformation. Biallelic pathogenic variants in the SLC26A4 gene, coding for the anion exchanger pendrin, are frequently involved in determining Pendred syndrome and nonsyndromic autosomal recessive hearing loss DFNB4 in EVA patients. In Caucasian cohorts, the genetic determinants of EVA remain unknown in approximately 50% of cases. We have recruited a cohort of 32 Austrian patients with hearing loss and EVA to define the prevalence and type of pathogenic sequence alterations in SLC26A4 and discover novel EVA-associated genes. METHODS: Sanger sequencing, single nucleotide polymorphism (SNP) assays, copy number variation (CNV) testing, and Exome Sequencing (ES) were employed for gene analysis. Cell-based functional and molecular assays were used to discriminate between gene variants with and without impact on protein function. RESULTS: SLC26A4 biallelic variants were detected in 5/32 patients (16%) and monoallelic variants in 5/32 patients (16%). The pathogenicity of the uncharacterized SLC26A4 protein variants was assigned or excluded based on their ion transport function and cellular abundance. The monoallelic or biallelic Caucasian EVA haplotype was detected in 7/32 (22%) patients, but its pathogenicity could not be confirmed. X-linked pathogenic variants in POU3F4 (2/32, 6%) and biallelic pathogenic variants in GJB2 (2/32, 6%) were also found. No CNV of SLC26A4 and STRC genes was detected. ES of eleven undiagnosed patients with bilateral EVA detected rare sequence variants in six EVA-unrelated genes (monoallelic variants in SCD5, REST, EDNRB, TJP2, TMC1, and two variants in CDH23) in five patients (5/11, 45%). Cell-based assays showed that the TJP2 variant leads to a mislocalized protein product forming dimers with the wild-type, supporting autosomal dominant pathogenicity. The genetic causes of hearing loss and EVA remained unidentified in (14/32) 44% of patients. CONCLUSIONS: The present investigation confirms the role of SLC26A4 in determining hearing loss with EVA, identifies novel genes in this pathophysiological context, highlights the importance of functional testing to exclude or assign pathogenicity of a given gene variant, proposes a possible diagnostic workflow, suggests a novel pathomechanism of disease for TJP2, and highlights voids of knowledge that deserve further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。