Cobalt oxide nanoparticles induce cytotoxicity and excessive ROS mediated mitochondrial dysfunction and p53-independent apoptosis in melanoma cells.

阅读:3
作者:Mohamed Hanan R H, Mohamed Basma A, Hakeem George M, Elnawasani Shahd H, Nagy Maria, Essam Rawan, Diab Ayman, Safwat Gehan
Nanotherapy has emerged as a promising strategy for the targeted and efficient treatment of melanoma, the most aggressive and lethal form of skin cancer, with minimized systemic toxicity. However, the therapeutic efficacy of cobalt oxide nanoparticles (Co(3)O(4)NPs) in melanoma treatment remains unexplored. This study aimed to assess the therapeutic potential of Co(3)O(4)NPs in melanoma treatment by evaluating their impact on cell viability, genomic DNA and mitochondrial integrity, reactive oxygen species (ROS) generation and apoptosis induction in melanoma A-375 cells. Our findings demonstrated a concentration-dependent reduction in cell viability upon treatment with five Co(3)O(4)NP concentrations (0.2, 2, 20, 200, and 2000 µg/ml), with an IC50 value of 303.80 µg/ml. Treatment with this IC50 concentration significantly increased ROS generation, induced dramatic DNA damage, and disrupted mitochondrial membrane potential integrity. Flow cytometric analysis revealed apoptosis and necrosis induction following Co(3)O(4)NP exposure at the IC50 concentration value. Results of qRT-PCR analysis demonstrated remarkable dysregulation of apoptotic and mitochondrial genes, including a significant downregulation of apoptotic p53 and mitochondrial ND3 genes and marked upregulation of the anti-apoptotic gene Bcl2. These findings highlight the novel potential of Co(3)O(4)NPs as potent inducers of melanoma A-375 cell death in a concentration-dependent manner through excessive ROS production, genomic instability, mitochondrial dysfunction and dysregulation of apoptotic and mitochondrial gene expression, ultimately promoting apoptosis in A-375 cells. This study thus underscores the potential of Co(3)O(4)NPs as a promising nanotherapeutic candidate for melanoma treatment, warranting further exploration to elucidate their full biological and clinical applicability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。