High-Density Inverted Micellar Intermediates Promote Membrane Fusion of Cationic Liposomes in Drug Delivery.

阅读:8
作者:KolaÅ¡inac Rejhana, Strandberg Erik, Schmitt Laura Maria, Jaksch Sebastian, Berkamp Sabrina, Dreissen Georg, Qdemat Asma, Förster Stephan, Sachse Carsten, Ulrich Anne S, Merkel Rudolf, Csiszár Agnes
Liposomes have become increasingly popular as carriers for pharmaceutically relevant molecules such as nucleic acids, proteins, or anticancer drugs. The bottleneck in delivering such vehicles is their inefficient endosomal uptake by target cells. To bypass endosomal degradation and enhance delivery efficiency, fusogenic liposomes have been developed. They fuse with extraordinary efficiency with the plasma membrane of mammalian cells and deliver their cargo directly into the cell cytoplasm. Here, we set out to decipher the key to membrane fusion and optimize the liposomal composition accordingly. Special focus has been placed on identifying the intrinsic phase properties of these liposomes. Therefore, giant and small cationic liposomes with outstandingly high membrane fusion efficiency were prepared, and their thermal phase behavior was investigated using fluorescence microscopy, solid-state NMR, small-angle neutron scattering (SANS), and cryo-electron microscopy techniques. Our experiments revealed a temperature-dependent phase behavior of those liposomes. At 25 °C and below, mainly a lamellar phase formed without elevated membrane fusion capacity. At the physiological temperature of 37 °C and above, we found high concentrations of inverted micellar intermediates and interlamellar attachments, presumably as precursors of a high-temperature 3D phase, embedded in a lamellar phase. Their structures were resolved by cryo-electron tomography. We believe that the presence of these metastable fusion intermediate structures enables highly efficient fusion with complex biological membranes under physiological conditions, as is necessary in biomedical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。