Diving on the Surface of a Functional Metal Oxide through a Multiscale Exploration of Drug-Nanocrystal Interactions.

阅读:6
作者:Percivalle Nicolò Maria, Bassila Julia Blandine, Piccinini Alice, Cumerlato Michela, Porro Mariangela, Trouki Cheherazade, Monti Susanna, Barcaro Giovanni, Bochicchio Davide, Piva Roberto, Rondelli Valeria, Rossi Giulia, Cauda Valentina
While recent advances in nanotechnology offer significant possibilities for improving the development of targeted drug delivery systems (DDSs), the design of efficient nanocarriers remains challenging due to the complex interactions among nanoparticles, their surfaces, and therapeutic agents in biological environments. To shed light on such difficulties and provide an instrumental tool for the refinement of DDSs, this study presents a comprehensive computational and experimental approach for the development of zinc oxide nanocrystals (ZnO NCs), exploited as carriers for a hydrophobic drug used in the treatment of multiple myeloma (MM), namely, carfilzomib (CFZ). Oleic acid was adopted here as a stabilizing agent during the synthesis of iron-doped ZnO NCs, while aminopropyl groups were used as functionalizing moieties to improve drug adsorption. Advanced characterization techniques were employed to investigate the nanostructure and drug-loading properties. Furthermore, molecular modeling was exploited for elucidating the adsorption mechanism and the thermodynamics of the interactions between the drug and the NCs, offering a detailed understanding at the molecular level. These simulations provided predictive insights into possible molecular inactivation mechanisms and strategies to optimize the nanocarrier design, thus enabling tailored adjustments throughout the development process. While biological tests showed that CFZ-loaded ZnO NCs preserved the drug mechanism of action in MM cell lines, the interconnection between simulations and experiments played a central role in predicting and optimizing NCs-drug interactions. This approach demonstrates the potential of computational simulations in minimizing trial-and-error in the nanoconstruct development process, ultimately streamlining the creation and validation of more effective nanoparticle-based drug delivery systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。