Manufacturing of ceramics is challenging due to their low toughness and high hardness. Additive Manufacturing (AM) has been explored to create complex ceramic structures, but current techniques face a tradeoff between precisely controlled feature sizes and high shrinkage at the microscales. Here, we introduce 3D-AJP, a novel freeform ceramic fabrication method that enables highly complex microscale 3D ceramic architectures-such as micropillars, spirals, and lattices-with minimal shrinkage and no auxiliary support. Using a near-binder-free nanoparticle ink in an Aerosol Jet (AJ) 3D printer, our approach precisely controls feature sizes down to 20 µm with aspect ratios up to 30:1. The resulting structures exhibit exceptionally low linear shrinkage of 2-6% upon sintering, spanning five orders of magnitude in length scale. Bi-material 3D architectures (zinc oxide/zirconia, zinc oxide/titania, titania/zirconia) and hybrid ceramics further demonstrate the technique's versatility. We showcase two key applications. First, 3D ceramic photocatalysts improve water purification performance, achieving a 400% increase in photocatalytic efficiency compared to bulk ceramics. Second, we develop a highly sensitive Her2 biomarker sensor for breast cancer detection, achieving a 22-second response time and a record-low detection limit of 0.0193 fm. Our technique will lead to high-performance sensing, filtration, microelectronics packaging, catalysis, and tissue regeneration technologies.
3D-AJP: Fabrication of Advanced Microarchitected Multimaterial Ceramic Structures via Binder-Free and Auxiliary-Free Aerosol Jet 3D Nanoprinting.
阅读:4
作者:Hu Chunshan, Jahan Sanjida, Yuan Bin, Panat Rahul
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;12(15):e2405334 |
| doi: | 10.1002/advs.202405334 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
