Natural resistance to lincosamides and streptogramins A (LSA), which is a species characteristic of Bacillus subtilis and Enterococcus faecalis, has never been documented in the Staphylococcus genus. We investigate here the molecular basis of the LSA phenotype exhibited by seven reference strains of Staphylococcus sciuri, including the type strains of the three described subspecies. By whole-genome sequencing of strain ATCC 29059, we identified a candidate gene that encodes an ATP-binding cassette protein similar to the Lsa and VmlR resistance determinants. Isolation and reverse transcription-quantitative PCR (qRT-PCR) expression studies confirmed that Sal(A) can confer a moderate resistance to lincosamides (8 times the MIC of lincomycin) and a high-level resistance to streptogramins A (64 times the MIC of pristinamycin II). The chromosomal location of sal(A) between two housekeeping genes of the staphylococcal core genome supports the gene's ancient origins and thus innate resistance to these antimicrobials within S. sciuri subspecies.
Characterization of sal(A), a novel gene responsible for lincosamide and streptogramin A resistance in Staphylococcus sciuri.
阅读:4
作者:Hot Chloé, Berthet Nicolas, Chesneau Olivier
| 期刊: | Antimicrobial Agents and Chemotherapy | 影响因子: | 4.500 |
| 时间: | 2014 | 起止号: | 2014 Jun;58(6):3335-41 |
| doi: | 10.1128/AAC.02797-13 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
