Retinal imaging is essential for diagnosing and treating retinal diseases. However, the lack of standardized and realistic optical phantoms limits the calibration and validation of imaging systems. Here we developed a realistic retinal phantom based on the concept of a super phantom designed to replicate the morphological and functional characteristics of the human retina. The phantom comprises a 13-layered structure, microfluidic channels to emulate vascular networks in the human retina, and fluorescent microbeads to replicate retinal autofluorescence. We validated the measurement of axial resolution, depth range, and field-of-view of optical coherence tomography (OCT) using the phantom. In addition, we confirmed the utility of the phantom across multiple ophthalmic imaging modalities, including OCT, OCT angiography, fundus autofluorescence, fluorescein angiography, and indocyanine green angiography. Imaging systems will be able to enhance the diagnosis and therapeutic monitoring of retinal diseases by standardizing imaging systems with this phantom and improving both the qualitative analysis and the accuracy of quantitative parameters, such as retinal thickness.
Design and application of a realistic and multifunctional retinal phantom for standardizing ophthalmic imaging systems.
阅读:7
作者:Lee Hyun-Ji, Lee Tae Geol, Doh Il, Lee Sang-Won
| 期刊: | Communications Engineering | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 26; 4(1):134 |
| doi: | 10.1038/s44172-025-00475-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
