This study evaluates the impacts of projected sea level rise (SLR) on coastal flooding across major Indian cities: Mumbai, Kolkata, Chennai, Visakhapatnam, Surat, Kochi, Thiruvananthapuram, and Mangaluru. Machine learning models, including Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GB), has been employed to assess flood risks under four Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585) emission scenarios. The research utilized these models because they demonstrate high performance in handling difficult data relationships and both temporal patterns and sophisticated environmental data. SLR projections provided by computers generate forecasts that combine with digital elevation models (DEMs) to determine coastal flooding risks and locate flood-prone areas. Results reveal that Mumbai and Kolkata face the highest flood risks, particularly under high emission scenarios, while Kochi and Mangaluru exhibit moderate exposure. Model performance is validated using residual analysis and Receiver Operating Characteristic (ROC) curves, confirming reliable predictive accuracy. These findings provide essential information for urban planners and policymakers to prioritize climate adaptation strategies in vulnerable coastal cities.
Impact of climate change scenario on sea level rise and future coastal flooding in major coastal cities of India.
阅读:3
作者:Chakrabortty Rabin, Ali Tarig, Atabay Serter, Roy Paramita, Pande Chaitanya Baliram
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 15(1):28689 |
| doi: | 10.1038/s41598-025-13394-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
