A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19.

阅读:6
作者:Almagrabi Alaa O, Abdullah Saleem, Shams Maria, Al-Otaibi Yasser D, Ashraf Shahzaib
The emergency situation of COVID-19 is a very important problem for emergency decision support systems. Control of the spread of COVID-19 in emergency situations across the world is a challenge and therefore the aim of this study is to propose a q-linear Diophantine fuzzy decision-making model for the control and diagnose COVID19. Basically, the paper includes three main parts for the achievement of appropriate and accurate measures to address the situation of emergency decision-making. First, we propose a novel generalization of Pythagorean fuzzy set, q-rung orthopair fuzzy set and linear Diophantine fuzzy set, called q-linear Diophantine fuzzy set (q-LDFS) and also discussed their important properties. In addition, aggregation operators play an effective role in aggregating uncertainty in decision-making problems. Therefore, algebraic norms based on certain operating laws for q-LDFSs are established. In the second part of the paper, we propose series of averaging and geometric aggregation operators based on defined operating laws under q-LDFS. The final part of the paper consists of two ranking algorithms based on proposed aggregation operators to address the emergency situation of COVID-19 under q-linear Diophantine fuzzy information. In addition, the numerical case study of the novel carnivorous (COVID-19) situation is provided as an application for emergency decision-making based on the proposed algorithms. Results explore the effectiveness of our proposed methodologies and provide accurate emergency measures to address the global uncertainty of COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。