This novel work explored the second law analysis and heat transfer in a magneto non-Newtonian power-law fluid model with the presence of an internal non-uniform heat source/sink. In this investigation, the motion of the studied fluid was induced by an exponentially stretching surface. The rheological behavior of the fluid model, including the shear thinning and shear thickening properties, are also considered as special case studies. The physical problem developed meaningfully with the imposed heat flux and the porosity of the stretched surface. Extensive numerical simulations were carried out for the present boundary layer flow, in order to study the influence of each control parameter on the boundary layer flow and heat transfer characteristics via various tabular and graphical illustrations. By employing the Shooting Runge-Kutta-Fehlberg Method (SRKFM), the resulting nonlinear ordinary differential equations were solved accurately. Based on this numerical procedure, the velocity and temperature fields are displayed graphically. By applying the second law of thermodynamics, and characterizing the entropy generation and Bejan number, the present physical problem was examined and discussed thoroughly in different situations. The attained results showed that the entropy generation can be improved significantly by raising the magnetic field strength and the group parameter. From an energetic point of view, it was found that the Reynolds number boosts the entropy generation of the fluidic medium and reduces the Bejan number. Also, it was observed that an amplification of the power-law index diminished the entropy generation near the stretched surface. As main results, it was proven that the heat transfer rate can be reduced with both the internal heat source intensity and the magnetic field strength.
Numerical Simulation of Entropy Generation for Power-Law Liquid Flow over a Permeable Exponential Stretched Surface with Variable Heat Source and Heat Flux.
阅读:3
作者:Abd El-Aziz Mohamed, Saleem Salman
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2019 | 起止号: | 2019 May 10; 21(5):484 |
| doi: | 10.3390/e21050484 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
