Nanostructured silicon is considered one of the most attractive anode materials for high-energy-density Li-ion batteries (LIBs) because it can provide a high capacity and extended cycle life compared to bulk Si anodes. However, little is known about the electrochemical lithiation mechanism in nanosilicon due to the lack of suitable measurement techniques. In this study, nanostructured anodes based on Si nanoparticles (approximately 6 nm) integrated within a conductive carbon-based matrix are studied by an in situ Raman spectroelectrochemical (SEC) method in modified coin cells in LIBs. Additionally, cyclic voltammetry and galvanostatic charge-discharge cycling are used to determine the stability of the solid electrolyte interphase (SEI) layer and the long-term capacity degradation of the Si nanoparticle-based anodes. The in situ Raman SEC provides unique insight into the crystal lattice changes and degradation/amorphization pathways of the Si nanocrystals and the electrolyte (LiPF(6) in EC/DMC) decomposition during the electrochemical lithiation and delithiation processes. The evolution of the spectral parameters (shift, line width, intensity) of the first-order Raman peak of crystalline Si at 520 cm(-1) is found to be related to the stress buildup in the nanoparticles. This stress originates from the (i) SEI layer formation on the electrode surface within the initial charge/discharge cycle, (ii) the lithiation-induced stress in Si nanoparticles and the native oxide on their surface, and also (iii) the progressive crystalline-to-amorphous Si phase transition. The structural changes in the anodes determined using in situ Raman SEC show good agreement with the results obtained from cyclic voltammetry measurements, revealing a progressive crystalline-to-amorphous Si phase transition and a complex energy storage mechanism in nanostructured silicon anodes in LIBs.
Structural and Chemical Changes in Si Nanoparticle-Based Anodes in Lithium-Ion Batteries during the (De)lithiation Processes Studied by In Situ Raman Spectroelectrochemistry.
阅读:10
作者:VlÄková Živcová Zuzana, Sonia Farjana J, Jindra Martin, Müller Martin, Äervenka JiÅÃ, Fejfar AntonÃn, Frank Otakar
| 期刊: | ACS Applied Energy Materials | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 28; 8(9):5729-5737 |
| doi: | 10.1021/acsaem.5c00066 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
