Fluorescence based detection is applied across various fields, including medical diagnostics and environmental sensing. A key challenge in these technologies lies in optimizing sensitivity through enhancement of the fluorescence signal. In this study, we demonstrate that combining piezoelectric and plasmonic processes increases the fluorescence yield. Piezoelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), is utilized as an external electric field modulator to produce a reliable and reproducible fluorescence enhancement of InP/ZnS quantum dots approaching the single nanoparticle level. The relationship between the applied force and the fluorescence response is both experimentally quantified and theoretically modeled and the dependence of the fluorescence enhancement on the excitation wavelength and on the PVDF-HFP substrate topography is elucidated. Furthermore, fluorescence enhancement by a magnitude of order for a DNA hybridization assay on the gold-coated PVDF-HFP substrate is demonstrated, highlighting the practical applicability of this approach in biosensing.
Piezoelectric-Driven Amplification of Plasmon-Enhanced Fluorescence for Advanced Sensing Applications.
阅读:3
作者:Kume Eni, Almohammadi Ghadeer, Duleba Dominik, M Alotaibi Aeshah Farhan, Gan Rongcheng, Mamaeva Kseniia, Bradley A Louise, Johnson Robert P, Rice James H
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 May 14; 17(19):28881-28893 |
| doi: | 10.1021/acsami.5c03428 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
