Serum‑derived exosomes from house dust mite‑sensitized guinea pigs contribute to inflammation in BEAS‑2B cells via the TLR4‑NF‑κB pathway

屋尘螨致敏豚鼠血清来源的外泌体通过 TLR4-NF-κB 通路促进 BEAS-2B 细胞炎症

阅读:5
作者:Chao Liu, Xiao-Lin Huang, Jian-Ping Liang, Xu Zhong, Zi-Feng Wei, Li-Xue Dai, Jun Wang

Abstract

Airway epithelial cells, which are the first physical defense barrier against allergens, play a pivotal role in immunity, airway inflammation and airway remodeling. The damage and dysfunction of these cells trigger the development of airway inflammatory diseases. Exosomes, which exist in various bodily fluids, mediate cell‑cell communication and participate in the immune response process. The present study aimed to investigate whether serum exosomes play a pro‑inflammatory role in bronchial epithelial cells (BEAS‑2B cells) and, if so, explore the underlying molecular mechanisms. A guinea pig model of House dust mite (HDM)‑induced asthma was established by sensitizing the rodents with HDM and PBS, and serum‑derived exosomes were harvested. It was found that serum‑derived exosomes from HDM‑sensitized guinea pigs displayed higher levels of exosomal markers than those from controls. Additionally, western blot analysis and reverse transcription‑quantitative PCR indicated that serum‑derived exosomes from HDM‑sensitized guinea pigs carried heat shock protein 70 and triggered an inflammatory response in BEAS‑2B cells via the toll‑like receptor 4 (TLR4)‑NF‑κB pathway. However, TAK‑242, an inhibitor of the expression of TLR4, blocked the activation of the TLR4‑NF‑κB pathway. These findings provided a novel mechanism for exosome‑mediated inflammatory responses and a new perspective for the intervention of inflammatory airway disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。