T stem cell-like memory cells (TSCM cells) are considered to be essential for the maintenance of immune memory. The TSCM population has been shown to have the key properties of a stem cell population: multipotency, self-renewal and clonal longevity. Here we show that no single population has all these stem cell properties, instead the properties are distributed. We show that the human TSCM population consists of two distinct cell subpopulations which can be distinguished by the level of their CD95 expression (CD95int and CD95hi). Crucially, using long-term in vivo labelling of human volunteers, we establish that these are distinct populations rather than transient states of the same population. These two subpopulations have different functional profiles ex vivo, different transcriptional patterns, and different tissue distributions. They also have significantly different TREC content indicating different division histories and we find that the frequency of CD95hi TSCM increases with age. Most importantly, CD95hi and CD95int TSCM cells also have very different dynamics in vivo with CD95hi cells showing considerably higher proliferation but significantly reduced clonal longevity compared with CD95int TSCM. While both TSCM subpopulations exhibit considerable multipotency, no single population of TSCM cells has both the properties of self-renewal and clonal longevity. Instead, the "stemness" of the TSCM population is generated by the complementary dynamic properties of the two subpopulations: CD95int TSCM which have the property of clonal longevity and CD95hi TSCM which have the properties of expansion and self-renewal. We suggest that together, these two populations function as a stem cell population.
Two distinct subpopulations of human stem-like memory T cells exhibit complementary roles in self-renewal and clonal longevity.
阅读:3
作者:Koftori Danai, Kaur Charandeep, Mora Bitria Laura, Zhang Yan, Hadcocks Linda, Yan Ada W C, BurzyÅski Piotr F, Ladell Kristin, Speiser Daniel E, Pollock Katrina M, Macallan Derek, Asquith Becca
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 Jun 20; 23(6):e3003179 |
| doi: | 10.1371/journal.pbio.3003179 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
