Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth

具有促进植物生长潜力的玉米 (Zea mays L.) 根际细菌的多样性

阅读:5
作者:Tairine G Ercole, Daiani C Savi, Douglas Adamoski, Vanessa M Kava, Mariangela Hungria, Lygia V Galli-Terasawa

Abstract

Plant growth-limiting factors, such as low nutrient availability and weak pathogen resistance, may hinder the production of several crops. Plant growth-promoting bacteria (PGPB) used in agriculture, which stimulate plant growth and development, can serve as a potential tool to mitigate or even circumvent these limitations. The present study evaluated the feasibility of using bacteria isolated from the maize rhizosphere as PGPB for the cultivation of this crop. A total of 282 isolates were collected and clustered into 57 groups based on their genetic similarity using BOX-PCR. A representative isolate from each group was selected and identified at the genus level with 16S rRNA sequencing. The identified genera included Bacillus (61.5% of the isolates), Lysinibacillus (30.52%), Pseudomonas (3.15%), Stenotrophomonas (2.91%), Paenibacillus (1.22%), Enterobacter (0.25%), Rhizobium (0.25%), and Atlantibacter (0.25%). Eleven isolates with the highest performance were selected for analyzing the possible pathways underlying plant growth promotion using biochemical and molecular techniques. Of the selected isolates, 90.9% were positive for indolepyruvate/phenylpyruvate decarboxylase, 54.4% for pyrroloquinoline quinine synthase, 36.4% for nitrogenase reductase, and 27.3% for nitrite reductase. Based on biochemical characterization, 9.1% isolates could fix nitrogen, 36.6% could solubilize phosphate, 54.5% could produce siderophores, and 90.9% could produce indole acetic acid. Enzymatic profiling revealed that the isolates could degrade starch (90.1%), cellulose (72.7%), pectin (81.8%), protein (90.9%), chitin (18.2%), urea (54.5%), and esters (45.4%). Based on the data obtained, we identified three Bacillus spp. (LGMB12, LGMB273, and LGMB426), one Stenotrophomonas sp. (LGMB417), and one Pseudomonas sp. (LGMB456) with the potential to serve as PGPB for maize. Further research is warranted to evaluate the biotechnological potential of these isolates as biofertilizers under field conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。