Radiometric calibration (RC) is an essential solution to guarantee measurements from infrared photonic sensors with certain accuracy, the main task of which is to determine the radiometric responsivity of sensor and usually be solved by comparing with some radiation source (i.e., blackbody), called source-based RC (SBRC). In addition to the complexity in manufacture, the nonideal characteristics of an available source will inevitably introduce unexpected uncertainties to reduce the final calibration accuracy by around 0.2-0.5âK in SBRC. Therefore, we propose an original source-independent RC (SIRC) principle based on modeling instead of comparing for SBRC, where the incident background radiation to detector, as a dominated factor influencing the responsivity characteristics of a photonic sensor, is modeled to implement RC for both two fundamental types (photoconductive and photovoltaic) of HgCdTe photonic detectors. The SIRC merely requires the temperature information of main components of a sensor other than some complex source and its assembly, and provides a traceable way at lower uncertainty costs relative to the traditional SBRC. The SIRC is being implemented in Fengyun-2 satellites since 2019, which ensures a long-term stable service of Chinese geostationary meteorological satellites for the global observation system under the framework of World Meteorological Organization. Moreover, a 20-year-period traceable Fengyun-2 dataset to be recalibrated with SIRC will benefit the further climate applications.
High-accuracy source-independent radiometric calibration with low complexity for infrared photonic sensors.
阅读:3
作者:Guo Qiang, Chen Fuchun, Li Xiangyang, Chen Boyang, Wang Xin, Chen Guilin, Wei Caiying
| 期刊: | Light-Science & Applications | 影响因子: | 23.400 |
| 时间: | 2021 | 起止号: | 2021 Aug 9; 10(1):163 |
| doi: | 10.1038/s41377-021-00597-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
