Subtype-selective positive modulation of KCa 2 channels depends on the HA/HB helices

KCa 2 通道的亚型选择性正调节依赖于 HA/HB 螺旋

阅读:5
作者:Young-Woo Nam, Meng Cui, Naglaa Salem El-Sayed, Razan Orfali, Misa Nguyen, Grace Yang, Mohammad Asikur Rahman, Judy Lee, Miao Zhang

Background and purpose

In the activated state of small-conductance Ca2+ -activated potassium (KCa 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates KCa 2.2a and KCa 2.3 channel activity but not the KCa 2.1 and KCa 3.1 subtypes. Experimental approach: Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtype-selective modulation of KCa 2 channels by CyPPA. Key

Purpose

In the activated state of small-conductance Ca2+ -activated potassium (KCa 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates KCa 2.2a and KCa 2.3 channel activity but not the KCa 2.1 and KCa 3.1 subtypes. Experimental approach: Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtype-selective modulation of KCa 2 channels by CyPPA. Key

Results

Mutating residues in the HA (V420) and HB (K467) helices of KCa 2.2a channels to their equivalent residues in KCa 3.1 channels diminished the potency of CyPPA. CyPPA elicited prominent responses on mutant KCa 3.1 channels with an arginine residue in the HB helix substituted for its equivalent lysine residue in the KCa 2.2a channels (R355K). KCa 2.1 channels harbouring a three-amino-acid insertion upstream of the cognate R438 residues in the HB helix showed no response to CyPPA, whereas the deletion mutant (KCa 2.1_ΔA434/Q435/K436) became sensitive to CyPPA. In molecular dynamics simulations, CyPPA docked between calmodulin C-lobe and the HA/HB helices widens the cytoplasmic gate of KCa 2.2a channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。