Disentangling the Optoelectronic Behavior of Lead Iodide Governed by Two-Dimensional Electron Confinement.

阅读:4
作者:Gouadria Hamida, Aguilar-Galindo Fernando, Álvarez-Alonso Jesús, de Miguel Juan José, Díaz-Tendero Sergio, Capitán María José
We present a joint experimental and theoretical study for complete spectroscopic characterization and optoelectronic properties of lead iodide. Experimentally, we combine X-ray diffraction experiments to elucidate the structure with photoelectron spectroscopy to explore its electronic structure. Computationally, simulations are performed in the frame of density functional theory. We show that PbI(2) presents a two-dimensional layered structure and exhibits a large transient photocurrent effect under visible light illumination, which are compatible with the surface photovoltage scenario. The transient photocurrent has an extremely long lifetime: when the sample is lightened with visible light, it shows very long relaxation times and, consequently, huge charge carrier diffusion lengths. We explain this anomalous behavior with the slow carrier mobility of holes and electrons caused by the 2D electron confinement in the layered material. Our results can be used as a simple model for understanding the optoelectronic properties of more complex 2D hybrid perovskites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。