Multifunctional Baicalin-Modified Contact Lens for Preventing Infection, Regulating the Ocular Surface Microenvironment and Promoting Corneal Repair.

阅读:4
作者:Luo Yue, Liu Luying, Liao Yuzhen, Yang Ping, Liu Xiaoqi, Lu Lei, Chen Jiang, Qu Chao
Corneal injury inevitably leads to disruption of the ocular surface microenvironment, which is closely associated with delayed epithelial cell repair and the development of infection. Recently, drug-loaded therapeutic contact lenses have emerged as a new approach to treating corneal injury due to their advantages of relieving pain, promoting corneal repair, and preventing infection. However, few therapeutic contact lenses could modulate the ocular surface's inflammation and oxidative stress microenvironment. To address this, in this study, we covalently immobilized multifunctional baicalin (BCL), a flavon molecular with anti-inflammatory, anti-oxidative stress, and antibacterial capabilities, onto the surface of the contact lens. The BCL-modified contact lens showed excellent optical properties, powerful antibacterial properties, and non-toxicity to endothelial cells. Furthermore, the BCL-modified contact lens could significantly modulate the ocular surface microenvironment, including inhibition of macrophage aggregation and resistance to epithelium damage caused by oxidative stress. In animal models, BCL-modified corneal contact lens effectively promoted corneal epithelial cells repair. These excellent properties suggested that multifunctional BCL molecules had great application potential in the surface engineering of ophthalmic medical materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。