UTX Regulates Human Neural Differentiation and Dendritic Morphology by Resolving Bivalent Promoters

UTX 通过解析二价启动子来调节人类神经分化和树突形态

阅读:5
作者:Qing-Yuan Tang, Shuang-Feng Zhang, Shang-Kun Dai, Cong Liu, Ying-Ying Wang, Hong-Zhen Du, Zhao-Qian Teng, Chang-Mei Liu

Abstract

UTX, a H3K27me3 demethylase, plays an important role in mouse brain development. However, so little is known about the function of UTX in human neural differentiation and dendritic morphology. In this study, we generated UTX-null human embryonic stem cells using CRISPR/Cas9, and differentiated them into neural progenitor cells and neurons to investigate the effects of UTX loss of function on human neural development. The results showed that the number of differentiated neurons significantly reduced after loss of UTX, and that the dendritic morphology of UTX KO neurons tended to be simplified. The electrophysiological recordings showed that most of the UTX KO neurons were immature. Finally, RNA sequencing identified dozens of differentially expressed genes involved in neural differentiation and synaptic function in UTX KO neurons and our results demonstrated that UTX regulated these critical genes by resolving bivalent promoters. In summary, we establish a reference for the important role of UTX in human neural differentiation and dendritic morphology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。