Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

阅读:3
作者:Boček Željka, Zubak Marko, Kassal Petar
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice. The graphene electrode was inkjet-printed on a flexible polyimide substrate and then thermally and photonically treated with intense pulsed light, followed by inkjet printing of a PB nanoparticle suspension. The optimization of post-printing treatment and electrode deposition conditions was performed to yield a platform with minimal sheet resistance and peak potential differences. A thorough study of PB deposition was conducted: the fully inkjet-printed system was compared against sensors with PB deposited chemically or by drop casting the PB suspension on different kinds of carbon electrodes (glassy carbon, commercial screen-printed, and in-house inkjet-printed electrodes). For hydrogen peroxide detection, the fully inkjet-printed platform exhibits excellent sensitivity, a wider linear range, better linearity, and greater stability towards higher concentrations of peroxide than the other tested electrodes. Finally, lactate oxidase was immobilized in a chitosan matrix, and the prepared biosensor exhibited analytical performance comparable to other lactate sensors found in the literature in a wide, physiologically relevant linear range for measuring lactate concentration in sweat. The development of mediator-modified electrodes with a single fabrication technology, as demonstrated here, paves the way for the scalable production of low-cost, wearable, and flexible biosensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。