Tackling the shortcomings of slow convergence, imprecision, and entrapment in local optima inherent in traditional meta-heuristic algorithms, this study presents the enhanced artificial hummingbird algorithm with chaotic traversal flight (CEAHA), which employs chaotic ergodicity within the foundational framework of the conventional artificial hummingbird algorithm. This approach implements chaotic motion within local regions of the solution space, ensuring a thorough exploration of potential optima and preventing algorithmic stagnation at local maxima by guaranteeing a non-repetitive traversal of all search states. This study also analyzes the intrinsic mechanisms by which eight different chaotic mappings affect optimization performance, from the perspectives of invariant measures and traversal efficiency of ergodic chaotic motion. In comparative tests with 21 meta-heuristic algorithms on the CEC2014, CEC2019, and CEC2022 benchmark suites across various dimensions, CEAHA demonstrates superior optimization performance. Furthermore, the practicability and robustness of CEAHA have been confirmed in mechanical design optimization problems through 4 engineering instances: pressure vessel, gear trains, speed reducers, and piston levers.
Enhanced artificial hummingbird algorithm with chaotic traversal flight.
阅读:5
作者:Du Juan, Zhang Jilong, Li Shouliang, Yang Zhen
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Oct 29; 14(1):25892 |
| doi: | 10.1038/s41598-024-77115-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
