EEG Feature Extraction Using Evolutionary Algorithms for Brain-Computer Interface Development.

阅读:4
作者:Rocha-Herrera César Alfredo, Díaz-Manríquez Alan, Barron-Zambrano Jose Hugo, Elizondo-Leal Juan Carlos, Saldivar-Alonso Vicente Paul, Martínez-Angulo Jose Ramon, Nuño-Maganda Marco Aurelio, Polanco-Martagon Said
Brain-computer interfaces are systems capable of mapping brain activity to specific commands, which enables to remotely automate different types of processes in hardware devices or software applications. However, the development of brain-computer interfaces has been limited by several factors that affect their performance, such as the characterization of events in brain signals and the excessive processing load generated by the high volume of data. In this paper, we propose a method based on computational intelligence techniques to handle these problems, turning them into a single optimization problem. An artificial neural network is used as a classifier for event detection, along with an evolutionary algorithm to find the optimal subset of electrodes and data points that better represents the target event. The obtained results indicate our approach is a competitive and viable alternative for feature extraction in electroencephalograms, leading to high accuracy values and allowing the reduction of a significant amount of data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。