This study evaluated the effects of Gracilariopsis lemaneiformis hydrocolloids on Nile tilapia (Oreochromis niloticus) using an advanced multiomics approach (transcriptome and proteome) linked with genomic isoform structure to elucidate the biofunctions of G. lemaneiformis hydrocolloids. The results showed that G. lemaneiformis hydrocolloids did not affect growth, as indicated by the nonsignificant differences in growth and blood biochemical indicators. Regarding the response, both intestine and liver tissues were assessed. These findings indicate that 20Â % G. lemaneiformis hydrocolloids enhanced cytokine expression, which may contribute to a biological function in the intestine and liver of O. niloticus. Genome and proteome profiles indicated that G. lemaneiformis hydrocolloids upregulated the intestine and liver peroxisome proliferator-activated receptor (PPAR) signaling pathway, nucleocytoplasmic transport, steroid biosynthesis, and histidine metabolism. In contrast, co-factor biosynthesis, nucleocytoplasmic transport, tryptophan metabolism, arginine and proline metabolism, arginine biosynthesis, and ribosome activity were downregulated. These findings indicate that G. lemaneiformis hydrocolloids significantly affect liver lipid and carbohydrate metabolism. Proteomics analysis revealed that G. lemaneiformis hydrocolloids upregulated the PPAR signaling pathway, playing a crucial role in lipid metabolism. In summary, 20Â % G. lemaneiformis hydrocolloids are primarily involved in modulating the intestine and liver PPAR signaling pathway to regulate lipid metabolism.
Characteristics of Gracilariopsis lemaneiformis hydrocolloids and their effects on intestine PPAR signaling and liver lipid metabolism in Oreochromis niloticus: A multiomics analysis.
阅读:5
作者:Shen Jia-Wei, Pan Po-Kai, Chen Yin-Yu, Nan Fan-Hua, Wu Yu-Sheng
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Nov 20; 10(23):e40416 |
| doi: | 10.1016/j.heliyon.2024.e40416 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
