Vitamin E (VitE), a potent antioxidant, has demonstrated significant potential in mitigating oxidative stress and cellular damage, making it a valuable agent for countering environmental toxicities, including those caused by polystyrene nanoplastics (PSNPs). This study examined the effects of PSNPs on the zebrafish visual system and evaluated the protective role of VitE. Zebrafish embryos were exposed to PSNPs (0.01, 0.1, 1, and 10 μg/mL) with or without 20 μM VitE co-treatment from fertilization to 6 days post-fertilization (dpf). Visual function, morphology, and molecular responses were assessed at 4 or 6 dpf. Exposure to PSNPs at concentrations of 0.1 to 10 μg/mL significantly increased bioaccumulation in the zebrafish eye in a concentration-dependent manner and disrupted the visual system. These disruptions caused a reduction in the eye-to-body length ratio and decreased optomotor response positivity and swimming distance, indicating impaired visual function and behavior. Furthermore, PSNPs elevated reactive oxygen species (ROS) levels, induced retinal apoptosis, and disrupted gene expression related to visual development (six6, pax2, pax6a, and pax6b), apoptosis (tp53, casp3, bax, and bcl2a), and antioxidant defense (sod1, cat, and gpx1a). VitE co-treatment significantly mitigated these adverse effects, reducing oxidative damage, restoring antioxidant defenses, and preserving retinal function. This study highlights the potential of VitE as a protective agent against PSNP-induced visual dysfunction and underlines the urgent need to address nanoplastic pollution to protect aquatic ecosystems.
Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae.
阅读:5
作者:Saputra Febriyansyah, Pramata Azzah Dyah, Soegianto Agoes, Hu Shao-Yang
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 30; 26(3):1216 |
| doi: | 10.3390/ijms26031216 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
