Effects of the Carbon Fiber-Carbon Microcoil Hybrid Formation on the Effectiveness of Electromagnetic Wave Shielding on Carbon Fibers-Based Fabrics.

阅读:5
作者:Kim Hyun-Ji, Kim Sung-Hoon, Park Sangmoon
Carbon fiber-carbon microcoil (CF-CMC) hybrids were formed on carbon fiber (CF)-based fabric. The morphologies of CF-based fabrics and CF-CMC hybridized fabrics were investigated. The electrical conductivities of the CF-CMC hybridized fabrics were examined and compared with those of native CF-based fabrics. Furthermore, the electromagnetic wave shielding effectiveness (SE) of the CF-CMC hybridized fabrics was investigated across operating frequencies in the 8.0⁻12.0 GHz range, and the results were compared with those for native CF-based fabrics. For the CF-based nonwoven fabrics, the SE values were improved by the CF-CMC hybridization reaction, although the electrical conductivities of the nonwoven fabric were reduced by the CF-CMC hybrid formation. For the CF-based woven fabrics, the SE values were improved by more than twofold throughout the entire range of frequencies, owing to the CF-CMC hybrid formation. This dramatic improvement was partly ascribed to the enhanced electrical conductivity, particularly in the transverse direction to the individual CFs. Owing to the increased thickness of the woven or nonwoven fabrics after the CF-CMC hybrid formation and the intrinsic characteristics of CMCs, the absorption mechanism for the SE was determined for the main factor that contributed to the improvement of the SE values.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。