Inhibitory properties of the P1 Tyr variant of antithrombin.

阅读:5
作者:Yang Likui, Manithody Chandrashekhara, Qureshi Shabir H, Rezaie Alireza R
Antithrombin (AT) and protein Z-dependent protease inhibitor (ZPI) are among two physiological serpin inhibitors in plasma that are involved in the regulation of the clotting cascade. Unlike AT, which can inhibit the proteolytic activity of all coagulation proteases, ZPI has narrower protease specificity, inhibiting only factors Xa (fXa) and XIa. Unlike an Arg at the P1 site of the AT reactive center loop (RCL), this residue is a Tyr in ZPI. To investigate the contribution of P1 Tyr in restricting the specificity of ZPI, we engineered an AT mutant in which the P1 Arg of the RCL was replaced with the P1 Tyr of ZPI (AT-R393Y). The reactivity of AT-R393Y with fXa and thrombin was decreased 155- and 970-fold, respectively. However, the serpin mutant inhibited chymotrypsin with an efficiency higher by >4 orders of magnitude. By contrast, chymotrypsin did not exhibit any reactivity with ZPI. The substitution of Asp-189 of fXa with the corresponding residue of chymotrypsin (Ser) did not improve the reactivity of the protease mutant with AT-R393Y; however, the fXa mutant reacted normally with ZPI. These results suggest that the contribution of P1 Tyr to restricting the protease specificity of ZPI is RCL context-dependent and that in addition to P1 Tyr, other structural features within and/or outside the ZPI RCL are involved in determining the protease specificity of the serpin. The results further suggest that thrombin is less tolerant than fXa in accommodating the nonoptimal P1 Tyr of the AT mutant in its active-site pocket.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。