Structural Effects on the Temperature Dependence of Hydride Kinetic Isotope Effects of the NADH/NAD(+) Model Reactions in Acetonitrile: Charge-Transfer Complex Tightness Is a Key.

阅读:5
作者:Beach Amanda, Adhikari Pratichhya, Singh Grishma, Song Meimei, DeGroot Nicholas, Lu Yun
It has recently frequently been found that the kinetic isotope effect (KIE) is independent of temperature (T) in H-tunneling reactions in enzymes but becomes dependent on T in their mutants. Many enzymologists found that the trend is related to different donor-acceptor distances (DADs) at tunneling-ready states (TRSs), which could be sampled by protein dynamics. That is, a more rigid system of densely populated short DADs gives rise to a weaker T dependence of KIEs. Theoreticians have attempted to develop H-tunneling theories to explain the observations, but none have been universally accepted. It is reasonable to assume that the DAD sampling concept, if it exists, applies to the H-transfer reactions in solution, as well. In this work, we designed NADH/NAD(+) model reactions to investigate their structural effects on the T dependence of hydride KIEs in acetonitrile. Hammett correlations together with N-CH(3)/CD(3) secondary KIEs were used to provide the electronic structure of the TRSs and thus the rigidity of their charge-transfer complexation vibrations. In all three pairs of reactions, a weaker T dependence of KIEs always corresponds to a steeper Hammett slope on the substituted hydride acceptors. It was found that a tighter/rigid charge-transfer complexation system corresponds with a weaker T dependence of KIEs, consistent with the observations in enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。