A Multi-Strategy Parrot Optimization Algorithm and Its Application.

阅读:3
作者:Yang Yang, Fu Maosheng, Zhou Xiancun, Jia Chaochuan, Wei Peng
Intelligent optimization algorithms are crucial for solving complex engineering problems. The Parrot Optimization (PO) algorithm shows potential but has issues like local-optimum trapping and slow convergence. This study presents the Chaotic-Gaussian-Barycenter Parrot Optimization (CGBPO), a modified PO algorithm. CGBPO addresses these problems in three ways: using chaotic logistic mapping for random initialization to boost population diversity, applying Gaussian mutation to updated individual positions to avoid premature local-optimum convergence, and integrating a barycenter opposition-based learning strategy during iterations to expand the search space. Evaluated on the CEC2017 and CEC2022 benchmark suites against seven other algorithms, CGBPO outperforms them in convergence speed, solution accuracy, and stability. When applied to two practical engineering problems, CGBPO demonstrates superior adaptability and robustness. In an indoor visible light positioning simulation, CGBPO's estimated positions are closer to the actual ones compared to PO, with the best coverage and smallest average error.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。