The Black-winged Kite Optimization Algorithm (BKA) is likely to experience a sluggish convergence rate when confronted with the optimization of complex multimodal functions. The fundamental algorithm has a tendency to get stuck in local optima, thus rendering it arduous to identify the global optimal solution. When dealing with large-scale data or high-dimensional optimization challenges, the BKA algorithm entails significant computational expenses, which might lead to excessive memory usage or prolonged running durations. In order to enhance the BKA and tackle these problems, a revised Black-winged Kite Optimization Algorithm (TGBKA) that incorporates the Tent chaos mapping and Gaussian mutation strategies is put forward. The algorithm is simulated and analyzed alongside other swarm intelligence algorithms by utilizing the CEC2017 test function set. The optimization outcomes of the test functions and the function convergence curves indicate that the TGBKA demonstrates superior optimization precision, a quicker convergence speed, as well as robust anti-interference and environmental adaptability. It is also contrasted with numerous similar algorithms via simulation experiments in various scene models for Unmanned Aerial Vehicle (UAV) path planning. In comparison to other algorithms, the TGBKA produces a shorter flight route, a higher convergence speed, and stronger adaptability to complex environments. It is capable of efficiently addressing UAV path planning issues and improving the UAV's path planning abilities.
Path Optimization Strategy for Unmanned Aerial Vehicles Based on Improved Black Winged Kite Optimization Algorithm.
阅读:9
作者:Wang Shuxin, Xu Bingruo, Zheng Yejun, Yue Yinggao, Xiong Mengji
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 11; 10(5):310 |
| doi: | 10.3390/biomimetics10050310 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
