Improvement strategies for heuristic algorithms based on machine learning and information concepts: a review of the seahorse optimization algorithm.

阅读:6
作者:Zheng, Shixing
To overcome the mechanical limitations of traditional inertia weight optimization methods, this study draws inspiration from machine learning models and proposes an inertia weight optimization strategy based on the K-nearest neighbors (KNN) principle with dynamic adjustment properties. Unlike conventional approaches that determine inertia weight solely based on the number of iterations, the proposed strategy allows inertia weight to more accurately reflect the relative distance between individuals and the target value. Consequently, it transforms the discrete "iteration-weight" mapping ( t → w ) into a continuous "distance-weight" mapping ( d → w ), thereby enhancing the adaptability and optimization capability of the algorithm. Furthermore, inspired by the entropy weight method, this study introduces an entropy-based weight allocation mechanism in the crossover and mutation process to improve the efficiency of high-quality information inheritance. To validate its effectiveness, the proposed strategy is incorporated into the Seahorse Optimization Algorithm (SHO) and systematically evaluated using 31 benchmark functions from CEC2005 and CEC2021 test suites. Experimental results demonstrate that the improved SHO algorithm, integrating the logistic-KNN inertia weight optimization strategy and the entropy-based crossover-mutation mechanism, exhibits significant advantages in terms of convergence speed, solution accuracy, and algorithm stability. To further investigate the performance of the proposed improvements, this study conducts ablation experiments to analyze each modification separately. The results confirm that each individual strategy significantly enhances the overall performance of the SHO algorithm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。