The efficiency of run rules schemes for the multivariate coefficient of variation: a Markov chain approach.

阅读:4
作者:Chew XinYing, Khaw Khai Wah, Yeong Wai Chung
Control charts are one of the important tools to monitor quality. The coefficient of variation (CV) is a common measure of dispersion in many real-life applications. Recently, CV control charts are proposed to monitor processes which do not have a constant mean and a standard deviation which changes with the mean. These processes cannot be monitored by standard control charts which monitor the mean and/or standard deviation. This research proposes the monitoring of the multivariate coefficient of variation (MCV) by means of run rules (RR MCV) control charts, which is not available in the existing literature. The design of these charts is obtained using a Markov-chain approach. The proposed charts are simple to implement. The performance of the RR MCV and Shewhart MCV (SH MCV) charts are compared in terms of the average run length (ARL) and the expected average run length (EARL). An example is illustrated based on a real dataset. The findings revealed that the performance of the proposed charts surpasses the SH MCV chart for detecting small and moderate MCV shifts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。