Experimental and theoretical EPR study of Jahn-Teller-active [HIPTN(3)N]MoL complexes (L = N(2), CO, NH(3)).

阅读:5
作者:McNaughton Rebecca L, Roemelt Michael, Chin Jia Min, Schrock Richard R, Neese Frank, Hoffman Brian M
The trigonally symmetric Mo(III) coordination compounds [HIPTN(3)N]MoL (L = N(2), CO, NH(3); [HIPTN(3)N]Mo = [(3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)NCH(2)CH(2))(3)N]Mo) are low-spin d(3) (S = (1)/(2)) species that exhibit a doubly degenerate (2)E ground state susceptible to a Jahn-Teller (JT) distortion. The EPR spectra of all three complexes and their temperature and solvent dependences are interpreted within a formal "two-orbital" model that reflects the ground-state configuration, describes the vibronic interactions that lead to the JT distortions, and addresses whether these complexes exhibit static or dynamic JT distortions. The electronic and vibronic properties of these complexes are then analyzed through ab initio quantum chemical computations. It is not possible to interpret the spectroscopic properties of the orbitally degenerate [HIPTN(3)N]MoL with DFT methods, so we have resorted to multi-reference wavefunction approaches, the entry level of which is the complete active space self-consistent field (CASSCF) method. Overall, the experimental and computational studies provide new insights into the role of trigonal coordination, as enforced by the [HIPTN(3)N](3-) ligand, in activating the Mo ion for the binding and reduction of N(2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。