Oxygen depletion in confined spaces represents one of the most serious and underestimated dangers for workers. Despite the existence of several commercially available and widely used gas oxygen sensors, injuries and deaths from reduced oxygen levels are still more common than for other hazardous gases. Here, we present hydrogel-based organic electrochemical transistors (OECTs) made with the conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) as wearable and real-time oxygen gas sensors. After comparing OECT performances using liquid and hydrogel electrolytes, we identified the best PEDOT:PSS active layer and hydrogel coating (30 µm) combination for sensing oxygen in the concentration range of 13â21% (v/v), critical for work safety applications. The fast O2 solubilization in the hydrogel allowed for gaseous oxygen transduction in an electrical signal thanks to the electrocatalytic activity of PEDOT:PSS, while OECT architecture amplified the response (gain ~ 104). OECTs proved to have comparable sensitivities if fabricated on glass and thin plastic substrates, (â12.2 ± 0.6) and (â15.4 ± 0.4) µA/dec, respectively, with low power consumption (<40 µW). Sample bending does not influence the device response, demonstrating that our real-time conformable and lightweight sensor could be implemented as a wearable, noninvasive safety tool for operators working in potentially hazardous confined spaces.
Oxygen Gas Sensing Using a Hydrogel-Based Organic Electrochemical Transistor for Work Safety Applications.
阅读:4
作者:Decataldo Francesco, Bonafè Filippo, Mariani Federica, Serafini Martina, Tessarolo Marta, Gualandi Isacco, Scavetta Erika, Fraboni Beatrice
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Mar 3; 14(5):1022 |
| doi: | 10.3390/polym14051022 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
