Intracellularly-retained decorin lacking the C-terminal ear repeat causes ER stress: a cell-based etiological mechanism for congenital stromal corneal dystrophy.

阅读:3
作者:Chen Shoujun, Sun Mei, Iozzo Renato V, Kao Winston W-Y, Birk David E
Decorin, a small leucine-rich proteoglycan (SLRP), is involved in the pathophysiology of human congenital stromal corneal dystrophy (CSCD). This disease is characterized by corneal opacities and vision impairment. In reported cases, the human gene encoding decorin contains point mutations in exon 10, generating a truncated form of decorin lacking the C-terminal 33 amino acid residues. We have previously described a transgenic mouse model carrying a similar mutation in the decorin gene that leads to an ocular phenotype characterized by corneal opacities identical to CSCD in humans. We have also identified abnormal synthesis and secretion of various SLRPs in mutant mouse corneas. In the present study, we found that mutant C-terminal truncated decorin was retained in the cytoplasm of mouse keratocytes in vivo and of transfected human embryonic kidney cells. This resulted in endoplasmic reticulum stress and an unfolded protein response. Thus, we propose a novel cell-based mechanism underlying CSCD in which a truncated SLRP protein core is retained intracellularly, its accumulation triggering endoplasmic reticulum stress that results in abnormal SLRP synthesis and secretion, which ultimately affects stromal structure and corneal transparency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。